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Accident scenario of a fuel tank fire 

• nearest building located 45 m from the fire 

• thermal irradiation loading of 6 kW/m2 

 

 

Introduction 

Figure 1:  Layout of the fire source, water curtain and protected buildings 
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water curtain 
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• Insufficient performance using a single water curtain array  

An additional study is required to characterise and understand the main parameters 

of the radiation heat shielding system! 

 

 

Introduction 

Figure 2:  Dimensions 
and distances 

35 m 

45 m 

60 m 
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• The water distribution pipe and nozzles 

elevation of 5 m  

• 21 water curtain nozzles directed upward  

(5 m spacing, 92 l/min per head, 160° 

spray cone angle) 

• 26 flat fan heads directed downward 

(2.5 m spacing, 63 l/min per head, 120° 

spray cone angle) 

 

 

System layout and operating parameters 

Figure 3: Layout sprinklers 
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Two types of sprinklers used for the barrier: 

• upper barrier: GW water curtain nozzle (www.gwsprinkler.com) 

• lower barrier: PNR GX flat fan nozzle (www.pnr.eu/prodotti/gx) 

System layout and operating parameters 

Design and performance characteristics ambiguity of the utilised sprinklers 
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System layout and operating parameters 

• Fuel tank diameter of 60 m 

• Maximum irradiation heat flux of 20 kW/m2 

• Distance of interest 75 m from the origin (i.e. 45 m from the tank) 

• Water curtain location approx. 10 m from the buildings (i.e. 35 m from the tank) 

External conditions:  

• Temperature of 12oC  

• 75% relative humidity  

• Initial zero wind conditions 

 

 

Additional data related to the system layout: 



Figure 4:  
Simulation domain layout 
(periodic section) 
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Spray behaviour 

CFD simulations to determine the most likely size of droplets and their speed 

• representative section of the water curtain 

• water nozzles in the mid-elevations 

• periodic boundary conditions  

 

periodic  
boundary  
conditions 

water  
nozzles 

Qrad 
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Spray behaviour 

• 5o spray rotation to avoid droplet 

collision 

• spray coverage with 100% overlap 

 

 

 

Figure 5:  Spray arrangement [1] 
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Spray behaviour 

Steady-state CFD simulations with 10000 

particle tracks 

Comparison with observations 

• droplet diameter of 800 m 

• downward speed of 12 m/s 

• upward speed of 20 m/s   

Figure 6:  Particle tracks – injection speed of 12 and 20 m/s 
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Thermal radiation 

Monte Carlo radiation model with 10 mil photon tracks 

• Directional source equivalent to 20 kW/m2 blackbody radiation at the tank wall 

• Multigrey radiation model for the absorption and emission of the gaseous mixture 

• Radiation absorptivity associated with spray droplets [2]: 

 

       where 𝜉𝜆 = 4𝜋𝑘𝜆 𝜆   and  𝑑 is the droplet diameter 

• Negligible effect of scattering 

 

 

𝛼𝜆 = 0.95 1 − 𝑒𝑥𝑝 −0.875𝜉𝜆𝑑  
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Thermal radiation 

Attenuation of thermal radiation due to absorptivity (and emissivity) of  

• liquid droplets produced by water sprays 

• water vapour - high initial relative humidity (75%) or droplet evaporation 

 

Modelling tasks conducted in the cylindrical coordinate system 
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Thermal radiation 

Radiation attenuation in absence of the spray curtain 

Figure  7:  Radial distribution of 
the irradiation heat flux obtained 
with the multigrey model 

location of the periodic 
CFD simulation domain 
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Single and double water spray curtain 

Figure 8:  Particle trajectories of 
the double water spray curtain 

CFD simulations for a single and a double water spray curtain 

• Particle tracks for the single water spray (Fig. 6)  

• Particle tracks for a staggered arrangement of the double water spray curtain (Fig. 8) 

front back 
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Single and double water spray curtain 

Figure 9:  Irradiation heat flux for the single water 
spray curtain 

Figure  10:  Irradiation heat flux for the double 
water spray curtain 
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Single and double water spray curtain 

Averaged irradiated heat flux at the distance of 75 m from the origin: 

• single water spray curtain:  4687 W/m2  

• double water spray curtain:  3674 W/m2  

 

Confidence in reducing the irradiation heat flux at the distance of 75 m below 3 kW/m2  
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Parametric analysis 

Algebraic modelling of the radiation attenuation to determine the required droplet size 

• Definition of the radiation intensity based on 

 

       where  

               𝑟𝑑𝑟𝑜𝑝 is volume fraction of droplets in the spray  

               𝜅𝑎𝑚𝑏 and 𝜅𝑑𝑟𝑜𝑝 are ambient and droplet absorption coefficients                            

               𝑥 is the radial distance from the source origin 

 

 

 

𝑑𝐼

𝑑𝑥
= − 1 − 𝑟𝑑𝑟𝑜𝑝 𝜅𝑎𝑚𝑏 + 𝑟𝑑𝑟𝑜𝑝𝜅𝑑𝑟𝑜𝑝 𝐼 
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Parametric analysis 

• Calculation of the ambient absorption coefficient 𝜅𝑎𝑚𝑏 using the Multigrey 

radiation model [11] 

• Absorption coefficient of spray droplets [14] 

 

       where  

            𝛼 is the droplet radiation absorptivity 

               𝑑 is the droplet diameter 

• Calculation of irradiation heat flux 

 

 

𝜅𝑑𝑟𝑜𝑝 =
1.5

𝑑
𝛼 

𝑞𝑖𝑟𝑟𝑎𝑑 =
𝐼

2𝜋𝑥
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Parametric analysis 

Validation of the algebraic using the CFD result for a single spray curtain 

 

Figure  11:  Radial variation of the irradiation heat flux (algebraic model) 

effect of the 

spray 
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Parametric analysis 

• Calculation of the radiation distribution (Fig.  11)  with the algebraic model for  

              droplet diameter d = 800 m 

              droplet volume fraction rdrop = 0.015 % 

              spray width xspray = 2.0 m 

• Droplet input parameters obtained directly from CFD simulation results 

Irradiation heat flux at the distance of 75 m from the origin: 

• algebraic model: 4713 W/m2 

• CFD simulation: 4687 W/m2 
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Parametric analysis 

Parametric analysis using the developed algebraic model:  

• droplet diameter reduced from 800 to 200 m 

• constant liquid water flow rate of 63.0 + 92.0 + 63.0 l/min over 5 m long section 
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Parametric analysis 

Avoiding the model dependence on the input parameters from the CFD simulations:  

•  Calculation of droplet speed (𝑢) from the force balance:  

 

 

       where the droplet drag coefficient (𝐶𝐷) is obtained via the Schiller-Neumann     

       correlation 

• Definition of the main attenuation parameter (𝑟𝑑𝑟𝑜𝑝 𝑥𝑠𝑝𝑟𝑎𝑦) based on the mass 

conservation equation 

 

      where 𝑚 𝑙𝑖𝑞is the mass flow rate and 𝑙𝑠𝑒𝑐𝑡 is the length of the section (i.e. 5 m) 
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𝑚 𝑙𝑖𝑞 = 𝜌𝑙𝑖𝑞𝑢 𝑟𝑑𝑟𝑜𝑝 𝑥𝑠𝑝𝑟𝑎𝑦 𝑙𝑠𝑒𝑐𝑡 



23 

Parametric analysis 

Reduction in the droplet diameter (𝑑) causes:  

• absorption coefficient (𝜅𝑑𝑟𝑜𝑝) increase  

• droplet speed (𝑢) decrease 

• main attenuation parameter (𝑟𝑑𝑟𝑜𝑝 𝑥𝑠𝑝𝑟𝑎𝑦) increase 

The droplet terminal speed (𝑢) may lead to an overestimate of the radiation attenuation!  

 

 

 

        

 

 



 

 

 

 

 

 

• Desired level of irradiation for droplet diameter below 500 𝜇𝑚  

• Increased number of smaller nozzles (with lower flow rate) per unit length 
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Parametric analysis 

𝑑 [𝜇𝑚] 𝑢 [𝑚/𝑠]  𝑟𝑑𝑟𝑜𝑝 𝑥𝑠𝑝𝑟𝑎𝑦 
[𝑚] 𝑞𝑖𝑟𝑟𝑎𝑑  [𝑊/𝑚2] 

800 3.04 2.39E-04 4085 

700 2.69 2.70E-04 3653 

600 2.33 3.12E-04 3075 

500 1.95 3.74E-04 2304 

400 1.55 4.70E-04 1333 

300 1.12 6.47E-04 380 

200 0.68 1.08E-03 6 

Table 1: Algebraic model – analysis results 



• CFD simulations for the droplet diameters of 500, 400 and 300 𝜇𝑚 

• Doubling the number of nozzles & halving the water flow rate per nozzle 
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Operating parameters of the improved system 

 

 

 

        

 

 

Heads directed upward: 

• 1/2 · 5.0 m spacing 

• nominal flow rate 1/2 · 92 l/min per head 

 Heads directed downward: 

• 1/2 · 2.5 m spacing 

• nominal flow rate 1/2 · 63 l/min per head 

 

 



• Vertical elevation increase for the frame with nozzles from 5 to 6.5 m 

• Unchanged initial droplet speed - 12 m/s for the downward sprays, and 28 m/s for 

the upward sprays 
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Operating parameters of the improved system 
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Operating parameters of the improved system 

 

 

 

        

 

 

Figure 12:  Particle trajectories for droplet 
diameter of 300 𝜇𝑚 

Figure  13:  Irradiation heat flux for droplet 
diameter of 300 𝜇𝑚 
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Operating parameters of the improved system 

 

 

 

        

 

 

Figure 14:  Vertical distribution of the main 
attenuation parameter 𝑟𝑑𝑟𝑜𝑝 𝑥𝑠𝑝𝑟𝑎𝑦  

Figure  15:  Vertical distribution of irradiation 
heat flux @ 75 m 



Average irradiation heat flux at 75 m from the origin 

 

 

 

• Reduction of the droplet diameter to 400 𝜇𝑚 for a single curtain system & raising 

the nozzles to 6.5 m 

• Necessity of a double curtain system for larger droplet sizes 
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Conclusions and recommendations 

𝑑 [𝜇𝑚] 𝑞𝑖𝑟𝑟𝑎𝑑  [𝑊/𝑚2] 

500 3577 

400 3020 

300 2184 Table 2:  CFD results of the improved system 



Thank you ! 
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